
Constructors and 
Inheritance



// filename: Main.java 

class Base { 

Base() { 

System.out.println("Base Class Constructor Called "); 

} 

} 

class Derived extends Base { 

Derived() { 

System.out.println("Derived Class Constructor Called "); 

} 

} 

public class Main { 

public static void main(String[] args) { 

Derived d = new Derived(); 

} 

} 

constructor of sub class is invoked when we create the object of subclass, In Java, constructor of base class 

with no argument gets automatically called in derived class constructor. it by default invokes the default 

constructor of super class. Hence, in inheritance the objects are constructed top-down. The superclass 

constructor can be called explicitly using the super keyword, but it should be first statement in a constructor. 

The super keyword refers to the superclass, immediately above of the calling class in the hierarchy. The use of 

multiple super keywords to access an ancestor class other than the direct parent is not permitted.

https://beginnersbook.com/2013/03/constructors-in-java/
https://beginnersbook.com/2014/07/super-keyword-in-java-with-example/


// filename: Main.java 

class Base { 

int x; 

Base(int _x) { 

x = _x; 

} 

} 

class Derived extends Base { 

int y; 

Derived(int _x, int _y) { 

super(_x); 

y = _y; 

} 

void Display() { 

System.out.println("x = "+x+", y = "+y); 

} 

} 

public class Main { 

public static void main(String[] args) { 

Derived d = new Derived(10, 20); 

d.Display(); 

} } 

But, if we want to call parameterized contructor of base class, then we can call it using super(). The point to 

note is base class constructor call must be the first line in derived class constructor. For example, in 

the following program, super(_x) is first line derived class constructor.



Inheritance and Method Overriding

When we declare the same method in child class which is already
present in the parent class the this is called method overriding. In
this case when we call the method from child class object, the child
class version of the method is called. Method overriding is one of the
way by which java achieve Run Time Polymorphism. If an object of a
parent class is used to invoke the method, then the version in the
parent class will be executed, but if an object of the subclass is used
to invoke the method, then the version in the child class will be
executed. In other words, it is the type of the object being referred
to (not the type of the reference variable) that determines which
version of an overridden method will be executed. However we can
call the parent class method using super keyword as I have shown in
the example below:

https://beginnersbook.com/2014/01/method-overriding-in-java-with-example/
https://www.geeksforgeeks.org/dynamic-method-dispatch-runtime-polymorphism-java/


class ParentClass{

//Parent class constructor

ParentClass(){

System.out.println("Constructor of Parent");

}

void disp(){

System.out.println("Parent Method");

}

}

class JavaExample extends ParentClass{

JavaExample(){

System.out.println("Constructor of Child");

}

void disp(){

System.out.println("Child Method");

//Calling the disp() method of parent class

super.disp();

}

public static void main(String args[]){

//Creating the object of child class

JavaExample obj = new JavaExample();

obj.disp(); }

}



Rules for method overriding:

Overriding and Access-Modifiers : The access modifier for an 
overriding method can allow more, but not less, access than the 
overridden method. For example, a protected instance method in 
the super-class can be made public, but not private, in the 
subclass. Doing so, will generate compile-time error.

https://www.geeksforgeeks.org/access-modifiers-java/


// A Simple Java program to demonstrate 
// Overriding and Access-Modifiers 
class Parent { 

// private methods are not overridden 
private void m1() 
{ 

System.out.println("From parent m1()"); 
} 

protected void m2() 
{ 

System.out.println("From parent m2()"); 
} }

class Child extends Parent { 
// new m1() method 
// unique to Child class 
private void m1() 
{ 

System.out.println("From child m1()"); 
} 

// overriding method 
// with more accessibility 
@Override
public void m2() 
{ 

System.out.println("From child m2()"); 
} }

// Driver class 
class Main { 

public static void main(String[] args) 
{ 

Parent obj1 = new Parent(); 
obj1.m2(); 
Parent obj2 = new Child(); 
obj2.m2(); }}



Final methods can not be overridden : If we don’t want a method to be overridden, we declare it 

as final. 

// A Java program to demonstrate that 
// final methods cannot be overridden 

class Parent { 
// Can't be overridden 
final void show() {} 

} 

class Child extends Parent { 
// This would produce error 
void show() {} 

} 

Static methods can not be overridden(Method Overriding vs Method Hiding) : When you define a 

static method with same signature as a static method in base class, it is known as method hiding.The

following table summarizes what happens when you define a method with the same signature as a 

method in a super-class. Private methods can not be overridden. The overriding method must 

have same return type (or subtype). Invoking overridden method from sub-class .

https://www.geeksforgeeks.org/final-keyword-java/
https://www.geeksforgeeks.org/can-we-overload-or-override-static-methods-in-java/


SUPERCLASS INSTANCE 
METHOD

SUPERCLASS STATIC 
METHOD

SUBCLASS INSTANCE 
METHOD

Overrides
Generates a compile-
time error

SUBCLASS STATIC 
METHOD

Generates a compile-
time error

Hides


